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LETTER TO THE EDITOR 

Ideal magnetohydrodynamics and passive scalar motion as 
geodesics on semidirect product groups 

Yuji Hattori 
Department of Physics, Faculty of Science, University of Tokyo, €Iongo 7-3-1. Bunkyo-h, 
Tokyo 113, Japan 

Received 18 November 1993 

Abstract. Three-dimensional ideal magnetohydrodynamic (%.d-iMHDj equations are shown to 
be a geodesic equation on an infinite-dimensional Lie p u p .  The group is the semidirect 
product of a group of volumepreselving diffeomorphisms (particle motion) and a linear space 
of divergenceless vecm fields (cmrent density). The present theory includes the work of Zeitlin 
and Kambe for two-dimensional iMHD flow as a special case. passive scalar motion in N- 
dimensional ideal hy&odyna?ic flow is also generally shown to be described by a geodesic 
equation. 

It is well known that the motion of an inviscid incompressible flow is closely related to the 
Riemannian geometty of a group of volume-preserving diffeomorphisms [l]. That is, the 
motion of fluid particles is a geodesic curve with respect to the right-invariant metric; in other 
words, the geodesic equation is equivalent to the Euler equation for an ideal-hydrodynamics 
(im) flow. Mathematical formulation of the theory was given by Ebin and Marsden [Z]. 
Arnold [ l ]  calculated the curvature tensors and some sectional curvatures in the case of 
two-dimensional flow with periodic boundary and thereby tried to study the instability of 
the particle motion. The curvature tensors in the case of N-dimensional periodic flow were 
calculated by Lukatskii [3]. Applications to ABc flow [4] and stretching of line elements 
[5] have been exploited. 

Recently Zeitlin and Kambe [6] have shown that the equations of two-dimensional ideal 
magnetohydrodynamics (Zd-iMHD) are equivalent to the geodesic equation for the semidirect 
product of two infinite-dimensional groups. They dealt with the periodic flow and obtained 
curvaiure tensors in that case. They also considered ‘Zid-iHD’ flow in relation to Zd-iMHD 
on the same semidirect product group but with a different metric. 

In this letter, we show that the equations of 3d-iMHD are also described by a geodesic 
equation. This result is to give a new profound basis for MHD equations. Our theory includes 
the result of Zeitlin and Kambe [61 as a special case. The details and applications will be 
published in the forthcoming paper [7]. 

We consider a 3d-iMHD flow in a domain M E R3. For simplicity the flow domain M 
is assumed to be. a Bat torus with periodic boundary or a simply-connected finite region. 
In the former case both the velocity field U and the magnetic field E are assumed not to 
have a mean flux; i.e. 1 ud3x = 1 Bd’x = 0. In the latter, the boundary aM of M is 
assumed to be perfectly conducting so that the magnetic field is tangent to the surface of 
M at the boundary aM and zem outside M. This implies the existence of surface current. 
Let us denote by SDiff(M) the group of volume-preserving diffeomorphisms on M. Its Lie 
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algebra, which is denoted by Vecb(M), is the tangent space of SDiff(M) at e (=identity 
mapping); it is a linear space of divergenceless vector fields on M, 

Vecb(M) = {U E Vect(M); V. U = 0) (1) 

where the linear space of all vector fields is denoted by Vect(M). 

multiplication defined by 
Let us consider a semidirect product group of SDiff(M) and Vecb(M) with the 

(g, O1) o (h ,  B )  = (g 0 h.Adh-1 (Y + B )  (2) 

where g, h E SDiff(M) and or, B E Vecb(M). The adjoint action Adh of SDiff(M) on 
Vecb(M) is given by Ad,, 01 = &,&-!01, where e h  and Eh-! are the induced actions from 
the left and right actions of SDiff(M) on i&elf 181. We denote by G this semidirect product 
group; G = SDiff(M)Dc Vecb(M). Its Lie algebra g = qe,0)G (the tangent space of G at 
the identity (e, 0)) turns out to be 

g = T,SDfl(M) x V-(M) = Vecb(M) x Vecb(M) (3) 

(note that ToVecb(M) = Vecb(M) since vecb(M) is a Linear space) with the bracket 

[(U, a), (U, 011 = ((U. vu - (U . v)U, (U. 0)p - (B . vu + (a. v)u - (U. vd (4) 

for U, U E T,SDiff(M) and 01, p E vecb(M). The Lie algebra g is later considered to be a 
space of velocity fields and current density fields. 

Before discussing the Riemannian geometry of G, we should study the structure of the 
algebra of vector fields on G; we denote by X(G)  this algebra. We should remark the 
difference between Vecb(M) and X ( G ) ;  a vector of X E X ( G )  at the identity (e, 0) gives 
a vectorfield on M ,  an element of Vecb(M); i.e. Xl(,,o) E Vecb(M). However, since the 
metric given below is right-invariant, it suffices to study the subalgebra XR(G) of X(G) ,  
where XR(G)  is a set of right-invariant vector fields on G. The right invariance of the 
metric reduces the task of the calculation that follows; we need to calculate the bracket, 
connection, etc, just at the identity. Moreover, since X R ( G )  is isomorphic to g = 4 , o ) G .  
its bracket immediately follows from that of g (equation (4)): 

Now we introduce a right-invariant metric ( , ) on G by 
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for (U’, U’), (U’, 8’) E qh,y)G. Note that (h,  y)-’ = (h-’, -Adh y). This metric 
corresponds to the total energy of MHD flow since we regard U as a velocity field and 
(Y as a current density field. That is, 

where V x Ea = a, x denoting the cross product in R3. Note that we should include 
d a c e  current in equation (7) to derive equation (9). 

For a given metric there is a Levi-Civita connection 9 derived by the following formula 
PI 

2(9xY, Z )  = X(Y, Z )  + Y ( Z ,  X) - Z ( X ,  Y )  
+ ( Z .  [X. YI) + {Y, [ Z ,  XI) - ( X ,  [Y, Z l )  

where X ,  Y, Z E X(G). Thus we obtain the following expression of the Levi-Civita 
connection for right-invariant fields using equations (S), c7), (8) and (10): 

1 
2 Q(aR..z*)(VR. 8R)l(h.y) = &h,y) ( ‘ v ) v  - -(U x B6 + 8 x Bd19 

1 
P v x  ( U xp+v XLY)--VX (VX (U x B g + v  x 4). G - 2 (11) 

Here the projection operator from Vect(M) to Vecb(M) is denoted by P; every vector field 
w on M is uniquely decomposed as 

UJ=u+Vf 

where U E Vecb(M) and f is a function on M satisfying I, fd3x = 0; the projection is 
now represented as P [ w ]  = U .  

A curve u(t) on G is called a geodesic when it satisfies 

qyx = 0 (12) 

where X = $U@) E T,(,)G. Since the vector field X on curve U is not right-invariant in 
general, we write quation (12) in the form 

(13) 
ax - - + v,x; = 0. 
at 

Here we have introduced the right-invariant vector field Xi defined by 

x~o(u(to)) = x(to) x;ol(g,Q) = k(g.U(b)-t,Q)x(tO) (14) 

for fixed to. Equation (13) is easily checked using equation (14) [7]. Using the Levi-Civita 
connection (11) and applying &t)-z to equation (13) in order to express the equations in 
terms of qe,o)G, we obtain 

(154 

(156) 

au - + P [ ( U .  v)U -U x Bel = 0 at  
am -- P[V x (VX (U x B,))] = o  
at 
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for (U, 01) = kc(,l-~ ~ ( r )  E T(~.,,)G. ~f we write the projection explicitly as P [ W ]  = U) - vp 
with a function p on M and integrate equation (15b) into that for Bm, the above equations 
turn out to be the 3d-iMHD equations 

au 
-+(U. V)U = -Vp + j x B 
at 
aB 
at 
- = V x (U x B )  

where j = a, B = B,. The conditions V . U = V . B = 0 are already assumed effective 
as we are working with qe,C = Vecb(M) x Vecb(M). Therefore, the three-dimensional 
ideal MHD motion is proved to be a geodesic motion on the semidirect product group 
SDfl(M)a Vecb(M). 

We can derive explicit expressions for curvature tensors and some sectional curvatures 
for a specific case such as M = T3 (three-dimensional periodic flow; T N  denotes the 
N-dimensional flat torus). They will be described in the forthcoming paper [7]. 

The above result is a generalization of that of Zeitlin and Kambe [6]. Let us see this in 
the following. We consider the periodic flow (M = T3) and define the subgroup GW of G 
by 

GU = {(g, U) E G;  g = (gx(x, Y). gy(xs Y), z), 01 = (O,O, a(x, Y))I. (17) 

The multiplication in this subgroup follows from that of the entire group G of (2): 

k, a) 0 @ +  B )  = k 0 h, (0.0, W ( x ,  Y)) + B ( x ,  Y)). (18) 

Note that for a vector field a directed in z axis the adjoint action reduces to Adh-m = 
eh-tkha = kha, since the diffeomorphism h is a pure two-dimensional one. Thus the 
subgroup GW can be identified with the semidirect product group of SDiff(M’) and F ( M ’ )  
(=the linear space of functions on M’ = P)  with the following multiplication 

(g, 01) 0 (h,  B )  = (g o h ,  01 o h  +B) .  (19) 

Zeitlin and Kambe. [6] worked on this group and obtained U-iMHD equations with the 
metric (7),(8) and the Levi-Civita connection. They interpreted multiplication (19) as charge 
transport. In the present theory, multiplication (2) immediately implies adjoint transport of 
current, though simpler interpretation may be found. 

Zeitlin and Kambe [6] also considered ‘2id-iHD motion’ in T2 with the same semidirect 
product group but with a different mehic. ‘2;d-m motion’ is actually a passive scalar 
motion in 2d-iHD flow. We can generalize their result for 2id- im motion to passive scalar 
motion in N-dimensional m flow in any domain in the same fashion as 3d-iMHD case. Let 
M be a flow domain in RN. As before, we assume M to be a flat torus with periodic 
boundary or a simply-connected finite region. We introduce the semidirect product group 
H = SDiff(M)= F(M) with multiplication (19). The bracket of right-invariant vector 
fields on H becomes 

(20) 

where (uR, aR)l(h.,, ,  = k(h,,,)(u, (U) = (U o h,  a o h)  for (U, a) E T ( , q H .  If we define the 
right-invariant metric by 

KUR.  01% (UR, BR)ll(*,y) = k,h .y , ( (U ’ V)v - (U . V U .  (U ’ V ) B  - (U ’ V)@) 

(0, (U), (U, B))l(e.~) = . UdNX + / olSdNx (21) 
M 
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with equation (S), the Levi-Civita connection is derived by formula (10) as 

V(uR.oR)(UR9 f i R ) l < h . y )  &h.y)(p[(u ' v)ul, (U ' p@)). (22) 

Hence the geodesic equation becomes 

au - + P [ ( u .  Vu] = 0 
at 
aa 
-+(U. p a  = 0. 
at 

( 2 3 4  

(23b) 

The above equations are just the Euler equation (23u) for incompressible inviscid fluid and 
the kinematic equation (236) for passive scalar field a. 

Finally we refer to the relation between our semidirect product structure and that 
in Marsden et al [lo]. Semidirect products appear quite frequently in ideal continuum 
mechanics. They are summarized in terms of Hamiltonian mechanics on Lie groups in 
Marsden etal [IO]. They treated the heavy top, compressible fluids, magnetohydrodynamics, 
elasticity, the Maxwell-Vlasov equations and multifluid plasmas. 

There is an apparent difference in the choice of essential variables. Marsden et ai 
worked on the following algebra in the case of compressible ~MHD flow (using the present 
notation [IO]): 

Vect(M) x F(M) x A1(M). (24) 

Here the set of onefonn fields on M is denoted by A1(M). The dual space of F ( M )  and 
that of A'(M)  were identified with the space of mass density fields and that of magnetic 
fields, respectively. Thus they considered the magneticfeid as one of the essential variables. 
However, we have so far regarded qe,o)G as the product of the space of velocity fields and 
that of current densityjields. Further discussions on this point will be developed elsewhere. 

The author expresses his gratitude to Professors T Kambe and V J Zeitlii for helpful 
guidance. 
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